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Physical networks [1], such as blood vessels, corals,
plants, and neurons, are network-based physical objects
that notably differ from abstract networks. Not only that
physical networks typically have different traditional net-
work metrics (such as distributions of degrees and cycles)
than abstract networks [2], they are also endowed with
rich geometry, such as distance, crossing angle, curva-
ture, etc., that cannot be described by adjacency ma-
trix only [1]. Despite an enormous body of studies on
the principle of formation of abstract networks, e.g., the
preferential attachment [3] or the fitness [4] mechanisms,
there is not much literature on the principle of formation
of physical networks, by which the nodes and links, rather
than a priori defined, should naturally emerge from some
geometric principle.

One such principle is wiring minimization, a.k.a. the
Steiner problem [5], aiming at linking all destinations
(terminals) with minimum total link length, which has
long been considered as the physical interpretation of
emerging network structures in complex systems such as
neurons [6] and ant tunnels [7]. Promisingly, the solution
of the Steiner problem naturally induces a tree-network
structure, which nonetheless predicts the following geo-
metric characteristics: (1) the tree only has degree ≤ 3
(i.e., bifurcation only); (2) all bifurcation angles are 120
degree (except at terminals); (3) all bifurcations are pla-
nar (even in higher-dimensional ambient space). By con-
trast, the Steiner predictions (1) and (2) are frequently
violated in real physical networks. For example, nodes
of degree 4 (trifurcation) cannot appear in the Steiner
solution, since any degree-4 node can be locally replaced
by two degree-3 nodes that produce a shorter overall link
length, yet trifurcations are frequently observed in differ-
ent biological systems [8]. Also, while most bifurcations
are planar [9], the bifurcating branches are found usu-
ally not crossing at 120 degree, but many times even
at 180 degree, a “sprouting” behavior that is frequently
observed in, for example, blood vessels (sprouting angio-
genesis) [10].

This prompts us to look into other candidates as the
principle of formation of physical networks. Recent ad-
vance in physical networks indicates that treating links
as having shapes leads to completely different geometric
characteristics than as shapeless wires [1]. We are thus

motivated to promote a graph to a higher-dimensional ge-
ometric object, namely, a smooth manifold [11]—a topo-
logical space that is everywhere locally similar enough
to some Euclidean space, where we can define calculus
and calculate geometric quantities. This leads to a prin-
ciple of formation on d ≥ 2 dimensions—a manifold min-
imization principle that, as we will see, gives rise to a
tree-network solution that is analogous to the Steiner so-
lution, yet need not follow the Steiner predictions (1) and
(2), in full accordance with observations in real-world
physical networks.

Manifold minimization principle.—Here, we focus on
d = 2 manifolds, i.e., surfaces. Surface area minimiza-
tion (Plateau’s problem) has been extensively studied,
which seems a natural generalization of the 1D Steiner
problem if we can fix terminals as boundaries and study
the minimal surface connecting them [Fig. 1(a)]. Unfor-
tunately, the existence of long physical links is forbidden
in Plateau’s problem. Indeed, if we fix two parallel and
identical circles as boundaries, then the minimal surface
that connects the boundaries is a physically disconnected
Goldschmidt solution [14] when d/w > 0.168 [Fig. 1(a)],
where d is the distance between the two circles and w is
the circumference of each circle. As a comparison, phys-
ical links in a real biological network typically have a
much larger ratio d/w ≈ 100 ∼ 101. This indicates that
real physical networks do not follow a surface minimiza-
tion principle based merely on minimizing the area with
no other constraints.

A key feature of physical networks is that the links
must maintain transportational functionality : it is a
necessary condition for physical links to have a phys-
ically connected skin in order to transport nutrients
(e.g., tree bark) or signals (e.g., neuronal membrane).
This prompts us to use the length scale w as a constraint
and consider a systolic surface minimization problem: we
require that every systole of the surface, defined as the
shortest closed curve(s) on the surface that cannot be
continuously contracted to a point because of topolog-
ical holes it essentially surrounds, must have length w
[Fig. 1(a)].

In the case of the circles as boundaries [Fig. 1(a)], the
cylinder is a trivial solution to the systolic surface min-
imization problem. The surface maintains transporta-
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FIG. 1: Manifold minimization. (a) When d/w > 0.168, traditional “soap-film” minimal surface that connects
the two circle boundaries degenerates from a catenoid to two planar disks and destroys transportational functionality.
Instead, keeping the length of every systole (shortest closed trajectory) fixed as w, the systolic minimal surface
maintains transportational functionality. In general, every cylindrical surface as well as their combinations (by sewing
their ends to form a tree network) is a systolic minimal surface. (b) Systolic surface minimizer: (Step 1) Choose n
punctures on the Riemann sphere, where n is the number of terminals. (Step 2) Find the corresponding Jenkins–
Strebel quadratic differential q(z)dz2 [12] and calculate the horizontal (blue) and vertical (red) trajectories. Along both
trajectories square-like quad meshes [13] are tiled over the manifold, giving rise to multiple charts (different colors)
that are cylindrical surfaces (by letting each quad mesh have the same size). (Step 3) Fix n terminals accordingly in
the 3D Euclidean space. Immerse the manifold into the Euclidean space isometrically. (Step 4) While keeping the
immersion isometric, adjust l and τ of each cylindrical surface so that the overall surface area is minimized.
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FIG. 2: Trifurcation. (a) Unlike Steiner graphs, systolic minimal surfaces allow trifurcation. (b) Given n = 4
terminals following perfect tetrahedral geometry, rather than linearly increasing with the internal leg length lint (as
in Steiner graph), the external leg length lext changes abruptly from the trifurcation regime (lint = 0) to the double
bifurcation regime (lint > 0), crossing near the threshold of lint ≈ 1.34w.

tional functionality for finite w, its area always linearly
scaling with its length. Although it is difficult to find a

general numerical solution given general boundary con-
ditions, it is proved that every cylindrical surface, which
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FIG. 3: Bimodal bifurcation. A bimodal bifurca-
tion denotes a bifurcation with two typical but differ-
ent systoles, one systole w for two of the external legs
and another systole w′ for the third external leg. Under
manifold minimization, we observe a structural transition
from the sprouting regime (w′/w ≲ 0.78) to the branch-
ing regime (w′/w ≳ 0.78).

has a flat Riemannian metric everywhere (equivalent to
a wrapped piece of flat paper but not necessarily a cylin-
der), is a systolic minimal surface, a special solution to
our minimization problem [12]. Moreover, any 2D mani-
fold, constructed from a tree graph of cylindrical surfaces
as charts, is itself a systolic minimal surface too [15].

Hence, the systolic surface minimization problem re-
duces to a problem of first constructing a tree of cylin-
drical surfaces in the ambient space, i.e., an isometric
immersion problem [13] that can be efficiently solved us-
ing the quad-mesh representation by letting each mesh
not only be a square but also have the same size [13].
Given fixed boundaries, after finding all possible systolic
minimal surfaces (i.e., with different twist τ or different
l [Fig. 1(b)]) as solutions, the optimal solution is reached
by selecting the systolic minimal surface with the small-
est surface area from all possible combinations of l, τ ,
and node geometries.

Trifurcation.—Now we consider the systolic surface
minimization problem with N = 4 terminals, located at
the four corners of a perfect tetrahedron. Only lext and
lint, initially chosen to match the Steiner solution in the
w → 0 limit, are freely adjustable for surface minimiza-
tion. When the systole w > 0, we find that lext and
lint follow a nonlinear relation that differs from Steiner’s
trivial linear relation (Fig. 2). When w is small (lext/w
is large), the geodesic lint of the internal leg remains pos-
itive and slightly above the Steiner prediction; when w
is large (lext/w is small), however, lint approaches zero.
This indicates that a structural transition happens near a
threshold of lext/w ≈ 1.34, below which the degeneration

of lint signals the emergence of trifurcation.

Bimodal bifurcation.—A possible generalization of the
systolic surface minimization is to constrain different
physical links by different systoles. Here, we investigate
the simplest case of a bimodal bifurcation that has dif-
ferent systoles, one systole w for two external legs and
another w′ for the third external leg, with all N = 3
terminals located at the three corners of an equilateral
triangle (Fig. 3). Our algorithmic solution predicts not
only that the branching angle (the solid angle Ω between
the two same-systole external legs) correlates positively
with the ratio of systoles w′/w, but also that a structural
transition emerges near w′/w ≈ 0.78, distinguishing two
long-hypothesized different morphological regimes: [16]
the “sprouting” regime (mode I [16]), where the branch-
ing angle is strictly zero; and the “branching” regime
(mode II [16]), where the branching angle starts increas-
ing with w′/w. Note also that bimodal bifurcations re-
main planar, hence do not violate the geometric con-
straint of planarity [9].
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